
Threats to the Validity of Mutation-Based Test Assessment

Mike Papadakis
University of Luxembourg

michail.papadakis@uni.lu

Christopher Henard
University of Luxembourg

christopher.henard@uni.lu

Mark Harman
University College London

mark.harman@ucl.ac.uk
Yue Jia

University College London
yue.jia@ucl.ac.uk

Yves Le Traon
University of Luxembourg
yves.letraon@uni.lu

ABSTRACT
Much research on software testing and test techniques relies
on experimental studies based on mutation testing. In this
paper we reveal that such studies are vulnerable to a po-
tential threat to validity, leading to possible Type I errors;
incorrectly rejecting the Null Hypothesis. Our findings in-
dicate that Type I errors occur, for arbitrary experiments
that fail to take countermeasures, approximately 62% of the
time. Clearly, a Type I error would potentially compromise
any scientific conclusion. We show that the problem derives
from such studies’ combined use of both subsuming and sub-
sumed mutants. We collected articles published in the last
two years at three leading software engineering conferences.
Of those that use mutation-based test assessment, we found
that 68% are vulnerable to this threat to validity.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Mutation testing, test assessment, subsuming mutants

1. INTRODUCTION
Much work on the empirical and experimental evalua-

tion of software test technique effectiveness and efficiency
relies on insertion of seeded faults. These faults, typically
machine-generated, are known as mutants [10], allow exper-
imenters to compare test techniques by comparing the num-
ber of mutants that they detect. This is called mutation-
based test assessment. Mutation-based test assessment is a
popular approach, used in approximately 19% of the soft-
ware testing studies, reported in the last two years in the
three leading conferences, ISSTA, (ESEC)FSE and ICSE.

Typically, researchers select a set of mutation operators,
with which they insert mutants into a set of programs (used
as the subjects of the experimental study). A mutant that

behaves differently from the original program with respect
to a test input t, is said to be killed by t. In this way,
mutation-based test assessment allows researchers to explore
the relative effectiveness of techniques.

In parallel with the use of mutant-based test assessment,
researchers have developed the theory and practice of mu-
tation testing itself. Much research has focused on the large
number of mutants applicable, and consequent cost of thor-
ough mutation testing. Many techniques have been intro-
duced to reduce the number of mutants apparently needed,
including random sampling [44, 52], principled selection [33,
36, 52] and higher order techniques [22, 44].

These techniques share the property that they concentrate
on reducing the cost of the method by excluding mutants.
They do this by demonstrating, experimentally, that remov-
ing mutants causes only an“acceptably low”reduction in test
effectiveness. However, no previous work has measured the
harmful effect of including certain mutants that really ought
to be excluded to avoid skewing results.

Many software testing researchers draw on recent [24] and
established [6] research that demonstrates a strong relation-
ship between mutants and real faults. These results are
comforting, because they indicate that the results obtained
from mutation testing may also carry over to findings that
would pertain to real faults in real systems. This removes
one significant potential threat to the validity.

The current state of mutation-based test assessment is
thus to rely on the assumption that mutants are good at
simulating real faults and that all mutants included in these
studies are, essentially, equally important and valuable in
their contribution to the overall assessment. Unfortunately,
fault realism is not the only threat to the validity of mutation-
based test assessment studies; the inclusion of some kinds of
mutant actually harms the test assessment.

That is, as we shall show in this paper, there are seri-
ous threats to validity that lie at the very heart of mutant-
based test assessment: the presence of subsumed mutants
(also known as redundant mutants), can artificially inflate
the apparent ability of a test technique to detect faults. Al-
though previous authors have discussed the use of mutation
scores based on subsuming mutants only [3, 22, 28], no pre-
vious studies have investigated the harmful effect of includ-
ing subsumed mutants in mutation-based test assessment
(which is widely used practice; approximately one quarter
of all test assessment studies use this approach1).

1We approximate this number by conducting a survey on
the papers published in last two years in the three leading
conferences, ISSTA, (ESEC)FSE and ICSE.

As our results show, the “subsumed mutant threat” can
lead to the commission of Type I errors (incorrectly reject-
ing the null hypothesis, when it is in fact true). Thus, an
experiment that compares two techniques, will seek to re-
ject a Null Hypothesis that the performance metrics of the
two techniques are drawn from the same overall distribution,
thereby providing statistical evidence that one technique is
superior. Our results show that subsumed mutants must be
removed before such a test is performed, in order to avoid
threats to the validity of such claims.

We present evidence from multiple experiments conducted
with sets of mutants applied to 5 widely-used benchmark
Unix utilities (Grep, Sed, Flex, Make and Gzip), to back
these claims. We show that the inclusion of subsumed mu-
tants in arbitrary sets of mutation-based test assessment ex-
periments leads to 62% of these experiments committing a
Type I error.

We found that fewer than 5% of all mutants are subsum-
ing (and not subsumed themselves). The remaining 95% of
mutants are subsumed by some other mutants. Clearly the
presence of so many subsumed mutants can cause distorting
effects, and this remains the case, even as the statistical ef-
fect size of test technique differences increases. Indeed, we
show that there will remain errors when two arbitrary test
techniques differ in their assessment by as much as 10%,
even though they both yield identically sized test suites.

Finally, our results also indicate that the proportion of all
mutants killed is not generally strongly correlated with the
proportion of subsuming mutants killed. Therefore, using
all mutants can skew results leading to serious threats to
validity, and findings that are not well correlated with results
from the more reliable subsuming mutant set.

Taken together, our findings provide strong evidence that
authors of studies concerned with mutation-based test as-
sessment should remove subsumed mutants before commenc-
ing mutation-based experimentation. We report on a sim-
ple sample of recent publications, which indicates that our
findings would require a fundamental change in the experi-
mental practice adopted by approximately two thirds of the
mutation-based test assessment literature.

2. MUTATION ANALYSIS

2.1 Test Criteria and Mutation Testing
Testing criteria are used to drive several forms of test-

ing process. Thus, they specify what are the requirements,
herein after termed test requirements, that should be ful-
filled by the test cases [4, 54]. Hence, test criteria are used
for guiding the test generation (generating test cases that
fulfill the uncovered requirements) [14, 43], selecting repre-
sentative tests among a large set of test cases [48], assessing
the level of test thoroughness (helping decide when to stop)
and they are also used as a comparison basis for other test
criteria [6, 22] and test generation or test selection methods.

Mutation testing seeks to reveal a deliberately introduced
set of artificial defects. A program with an introduced defect
is called a mutant, or mutant program, and it is obtained by
applying basic syntactic rules. For instance, the following
fragment of code “if (a > b)” can be mutated into “if (a

≥ b)” by applying the syntactic change, which consists of
replacing the relational operator “>” by “≥”. The resulting
program (embedding this altered fragment of code) is a mu-
tant, because it is exactly the original program excepted for

the syntactic change that has been made. The set of rules
defining the possible changes are named mutation operators,
and the application of all the rules allows the tester to ob-
tain a set of mutants differing from the original program in
one specific part of the code.

Mutants are produced to evaluate the ability of the test
suite to expose them. The idea behind mutation is to as-
sess whether the test suite will exercise the parts of the code
that were changed, and whether the program execution is
sufficiently “sensitive” to propagate the altered code to the
observable output of the program. Thus, we say that a mu-
tant is killed if the output of this program mutant is different
from the output of the original program. If the output is the
same, the mutant is called live. By executing the test suite
towards all the mutants, we can evaluate the mutation score
(MS), which is the ratio of the killed mutants to the number
of killable mutants2. As a result, mutation score quantifies
the level of test thoroughness.

2.2 Equivalent, Duplicated, Trivial and Sub-
sumed Mutants

Killing all the mutants is not possible due to the fact that
mutant programs can form functionally equivalent versions
of the original program. These mutants are called equiva-
lent mutants and must be removed from consideration when
using mutation as a test assessment metric. Equivalent mu-
tants form one of the main problems of mutation testing [4,
42, 47] because identifying them is an undecidable problem
[8]. However, in the case that mutation is used for com-
parison, then, it might be possible to collect a large set of
test data and sweep out all live mutants. Since the focus
is on the differences between the techniques this practice is
regarded to be adequate [6].

Recently, Papadakis et al. [42] provided evidence that
such a practice might be problematic, due to the existence
of numerous equivalences between killable mutants. Hence,
it was advised that future research should remove from con-
sideration all duplicated mutants, i.e., mutants equivalent to
one another but not to the original program, in order to
avoid counting them multiple times.

Several researchers have proposed reducing the cost of mu-
tation based on the notion of subsuming mutants [22, 28].
Kaminski et al. [27] and Just et al. [25] identified some cases
of subsumed mutants that were produced by the relational
and logical mutation operators. Hence, they proposed using
a restrictive version of the relational and logical operators.

In this paper, we investigate the harmful effects of sub-
suming mutants on other studies that used mutation as a
basis of comparison (to decide which testing methods per-
form better). Given a test suite, a mutant subsumes another
one, if it is killed by a subset of the test cases the kill the
other. That is, whenever the subsuming mutant is killed,
the subsumed mutant is also killed. We discuss the process
of identifying subsuming mutants in the following section.

2.3 Subsuming Mutants
Program mutation is widely used as a means of assessing

testing methods [5, 23]. To this end, the mutation score
is used as a basis of comparison to decide which testing
methods perform better, i.e., the winning method being the
one yielding the highest score. However, such comparisons

2Some mutants cannot be killed because there is no test case
that can be written to kill them.

do not take into account the fact that not every mutant is
of equal value [22]. Indeed, some mutants are killed by most
of the test cases, some are duplicated, some are hard to kill
and some are equivalent to the original program.

As a result, it is important to remove mutants which
are either equivalent or duplicated when using mutation for
comparing different testing methods [42]. However, many
mutants tend to be killed “collaterally” in most of the cases
[3, 22, 28], because they are subsumed. Thus, they do not
contribute to the testing process, despite being considered
for the calculation of the mutation score. As a result, the
mutation score is inflated and becomes skewed.

To avoid the inflation problem, only the mutants con-
tributing to the mutation score should be used. We call
these mutants subsuming mutants. Subsumption is defined,
according to Ammann et al. [3], as follows: “one mutant
subsumes another if at least one test kills the first and every
test that kills the first also kills the second”. It is noted that
mutant subsumption is reflexive (every mutant trivially sub-
sumes itself). We define subsuming mutation score (MS∗)
as the ratio of the subsuming mutants that are killed by the
tests under assessment to the number of all subsuming ones.
Thus, for example if we have a mutant set of 3 mutants
(named as m1, m2 and m3) and a test set of 3 tests (named
as t1, t2 and t3), where m1 is killed by t1, m2 by t1 and t2,
and m3 by t3, we have two subsuming mutants, m1 and m2.
Then the test set <t1, t2> kills 66.7% of all the mutants and
50% of the subsuming ones.

The process of identifying the subsuming mutants is an
NP-complete problem [3], but it can be approximated with
a greedy algorithm, such as the one of Algorithm 1. From
a set of mutants S, the algorithm starts by removing the
live and duplicate mutants (lines 2 and 3). Then, the most
subsuming mutant is identified (lines 8 to 15). This mu-
tant, when it is killed, leads to the highest number of other
mutants being “collaterally” killed. This most subsuming
mutant is then added to the subsuming mutants set D (line
16) and the subsumed mutants are removed from S (line
17). This process is repeated until S is empty.

3. RESEARCH QUESTIONS
We use the term mutant inflation effect for the skew in

the mutation score that is caused by subsumed mutants.
Previous research has focused on reducing the cost of mu-

tation by removing some redundant mutants [25, 27, 42].
Therefore, our first research question regards the prevalence
of subsuming mutants, after removing those identified by the
current state of the art, i.e., the use of restrictive operators
that produce less subsumed mutants [25, 27] and using the
Trivial Compiler Equivalence (TCE) technique for removing
duplicated mutants [42]. Thus, we seek to investigate:

RQ1. What ratio of mutants are subsuming, i.e., contribut-
ing to the testing process?

Answering this question will help testers understand the
extent of “noise” in the mutation score measurement. Of
course demonstrating that subsumed mutants exist and they
are numerous, does not necessarily indicate that the muta-
tion score measurement is adversely altered by them or that
technique comparisons based on them are biased by them.
Also, there is no evidence that subsuming mutants do not
suffer from the same problem. Thus, we investigate the fol-
lowing question:

Algorithm 1: Subsuming Mutants Identification

Input: A set S of mutants, a set T of test cases, a matrix M of
size |T | × |S| such as Mij = 1 if testi kills mutantj

Output: The subsuming mutant set D from S

1 D = ∅
/* Remove live mutants */

2 S = S \ {m ∈ S | ∀i ∈ 1..|T |,Mij 6= 1}
/* Remove duplicate mutants */

3 S = S \ {m ∈ S | ∃m′ ∈ S | ∀i ∈ 1..|T |,Mij(m) = Mij(m′)}
4 while (|S| > 0) do
5 maxSubsumed = 0
6 subsumedMut = null
7 maxMutSubsuming = null

/* Select the most subsuming mutant */
8 foreach (m ∈ S) do
9 subm = {m′ ∈ S|∀i ∈ 1..|T |, (Mij(m) = 1)⇒ (Mij(m′) =

1)}
10 if (|subm| > maxSubsumed) then
11 maxSubsumed = |subm|
12 maxMutSubsuming = m
13 subsumedMut = subm

14 end

15 end
/* Add the most subsuming mutant to D */

16 D = D ∪ {maxMutSubsuming}
/* Remove the subsumed mutants from the remaining */

17 S = S \ subsumedMut

18 end

19 return D

RQ2. Do randomly selected sets of mutants suffer from the
mutant inflation effect?

We answer this question by visualizing the relation of
killing randomly sampled mutants, of varying sizes, with
the mutation score (MS), computed based on all mutants,
and the subsuming mutation score (MS∗).

We demonstrate that sampled mutants suffer from the
inflation effect and thus, the measurement becomes skewed,
as the number of mutants increases. This provides evidence
suggesting that subsuming mutants can deflate the mutation
score (MS) measurement.

A large body of literature uses mutation analysis as a
comparison basis between techniques. In these cases, mu-
tants are used to measure test thoroughness and determine
the most effective method. Given the fact that large pro-
portions of mutants are subsumed, an emerging question
is to what extent these mutants can influence the above-
mentioned cases. Therefore, we ask the following question:

RQ3. Does the mutation score (MS), computed based on
all mutants, correlate with the subsuming mutation
score (MS∗)?

Knowing the level of this correlation can provide evidence
in supporting (or not) the validity of the mutation-based
assessment studies. In particular, in case there is a strong
correlation, we can infer that the influence of the subsumed
mutants on software testing experiments is minor. Other-
wise, the effects of the subsumed mutants may be distorting.

The correlations reflect the influence of the subsumed mu-
tants on software testing experiments. However, from these
data we cannot infer the chance that researchers make wrong
decisions in their test experiments, which involve mutation-
based assessment. Therefore, we seek to investigate the ex-
tent to which subsumed mutants can lead to an erroneous
judgment, with respect to test effectiveness, when compar-
ing two arbitrary testing methods. Hence we ask:

RQ4. What is the chance of committing a Type I error
when comparing the quality of test sets, produced by
arbitrary test techniques using mutation score (MS)?

We answer this question by simulating a scenario that
compares two hypothetical arbitrary testing methods. Thus,
we randomly and repeatedly select two sets of test suites
which have the same size and statistically significant differ-
ences in their mutation scores. We then compute the number
of times that there is no statistical significance with respect
to the subsuming mutants, i.e., with respect to the MS∗

measure. This process simulates the Type I errors in arbi-
trary sets of mutation-based test assessment. The ratio of
them represents the chance of committing such an error.

A positive answer to this question is critically important
since it raises concerns regarding the validity of software
testing studies that use mutation-based test assessment ex-
periments.

Type I errors computed in RQ4 are based on sets of data
that are statistically different. However, two sets might have
statistically significant differences but at the same time their
actual differences can be small. This is measured by the sta-
tistical effect size. Therefore, we seek to measure the sensi-
tivity of the mutation score in committing an error when the
two examined sets differ statistically with varying effect size
differences, i.e., the mutation scores of the two sets differ by
either 2%, 4%, 6%, 8%, or 10% on average. This leads us to
our last research question:

RQ5. When comparing testing methods, how sensitive is
the mutation score measurement in committing Type
I errors when the examined sets of data have varying
effect sizes, i.e., when their mutation scores differ by
some percentage?

The answer to this question will estimate the chance to
have an error when a method is better than another one
by some percentage with respect to MS. It is natural to
expect that as the effect size goes up, the number of errors
will reduce. However, we are interested to know whether the
error disappears completely.

4. METHODOLOGY

4.1 Definition of the experiment and analysis
procedure

To answer the stated research questions we used five open-
source programs with mature test suites and performed our
analysis on them. Details regarding the programs and tools
of the experiment can be found in Sections 4.3 and 4.4 re-
spectively. We generated our analysis set of mutants, per
program, using all the mutation operators supported by our
tool (see Section 4.4). Then, we discarded all the trivially
duplicated ones, using the TCE method of Papadakis et al.
[42]. We carried out this process in order to avoid report-
ing large numbers of subsumed mutants that can be easily
identified and removed. Along the same lines, our tool uses
the restrictive mutation operators proposed by Kaminski et
al. [27] and Just et al. [25]. We also discarded all mutants
that were not killed by the available test suites. We call
the resulting sets of mutants the analysis mutant sets. This
is a usual process in mutation-based test assessment (see
Andrews et al. work [6]).

To answer RQ1, we computed the number of subsuming
mutants. This was done based on Algorithm 1. We re-
port their ratios, per program, over the analysis mutant
sets. These ratios represent an estimation of the number
of mutants that have an effect in the test selection process.
Similarly, since killing these mutants results in killing all
the mutants, they can also be seen as the set of mutants
that a tester needs to consider in order to design test cases
according to the mutation testing criterion.

For RQ2 we randomly picked subsets of mutants of size of
0.5%, 1%, 2%, 4%, 8%, 16%, 32% and 64% of the analysis
mutant set. We took 30 sets per size considered and per pro-
gram. For every mutant set, we randomly selected tests that
kill its mutants. This test selection was performed by ran-
domly picking tests, executing them with the mutants and
keeping only those that kill additional mutants (not killed
by the previously selected tests). This process can be seen
as the test design process followed by a tester where itera-
tively live mutants are selected and tests that kill them are
designed. Overall, by using mutant sets of various sizes, se-
lecting test cases that kill them, and measuring their ability
to kill other mutants, we can explore the inflation effect. If,
the more mutants we consider, the more skew we observe
then the inflation effect is important. Ideally, we would like
to have a relation that can clearly distinguish among all the
different mutant sets. We also measured the ratio of the
subsuming mutants that are killed by the tests, specifically
selected to kill the mutant sets. Recall that subsuming mu-
tants were selected by using the Algorithm 1.

Since we cannot know the representative experiments that
might be used to perform some arbitrary mutation-based
assessment, we constructed multiple randomly constructed
experiments to simulate the effects of arbitrary choice of
experiments. Thus, to address RQ3, we randomly selected
1,000 sets of tests for 30 different test suite sizes of, i.e., with
sizes of 3, 6, 9, ..., 90, and measured the correlation between
mutation score (MS) and subsuming mutation score (MS∗).
To calculate the correlation, we used three correlation coeffi-
cients: Kendall, Pearson and Spearman. Additional details
regarding the correlation analysis can be found in Section
4.2. Different test suite sizes were used to investigate the
influence of test quality to the reported correlations. Fol-
lowing the suggestions made in literature, i.e., according to
previous works [21, 32], we use different sizes of test suites
to represent the various levels of test quality.

To simulate a scenario that compares two hypothetical
testing methods and answer RQ4, we randomly and repeat-
edly select two sets of ten test suites that have the same
size and perform a statistical comparison in their mutation
scores. We considered test suite size of 3, 6, 9, ..., 90. Then
we computed the mutation score for each set and performed
a Mann-Whitney statistical test, with a significance level of
0.05, to see whether they have statistically significant differ-
ences. In case they have not, we discarded them and started
over. In case they are significantly different, we performed
a second time the statistical test to see whether they have
statistically significant differences according to the subsum-
ing mutants, using the MS∗ metric, and we recorded the
number of disagreements, i.e., the number that both mu-
tation score and subsuming score judge that one set has
higher score than the other. We repeated this process 30
times. Therefore, the number of disagreements estimates
the chance of Type I errors in the testing experiments.

Finally, to answer RQ5 we constructed random sets of test
suites, of size 3, 6, 9, ..., 90, and categorize them according to
mutation score. Then we randomly chose 30 sets of 10 pairs,
of the same test size, that have 2%, 4%, 6%, 8% and 10% dif-
ferences in their mutation score, i.e., effect size differences.
We verified that in all the 30 sets differ statistically. Then
we count the number of times that mutation score measure
agrees with that of the subsuming mutants, i.e., agreement
means that according to both mutation score (MS) and sub-
suming score (MS∗) the one set has higher score than the
other. The difference from the previous case, RQ4, is that
we measure the sensitivity to errors when we control both
test size and average mutation score difference between the
two considered sets of data.

4.2 Statistical Analysis
We perform a correlation analysis to evaluate whether

the mutation score, when considering all mutants, correlates
with the subsuming mutation score (see Section 5.3). To this
end, we use three correlations measures: Kendall rank co-
efficient (τ) (Tau-a), Pearson product-moment correlation
coefficient (r) and Spearman’s rank coefficient (ρ). In all
cases, we considered the 0.05 significance level.

The Kendall rank coefficient, often referred to as Kendall
τ , measures the similarity in the ordering of the mutation
scores. In this paper, we measure the mutation score MS
and the subsuming mutation score MS∗ when using 3, 6,
..., 90 test cases. We obtain pairs of the type (MS3,MS∗

3),
(MS6,MS∗

6), ..., (MS90,MS∗
90). Any two pairs (MSi,MS∗

i),
(MSj ,MS∗

j) are said to be concordant if either both MSi >
MSj and MS∗

i > MSj∗, or both MSi < MSj and MS∗
i <

MSj∗, and they are said to be discordant in the case MSi >
MSj and MS∗

i < MSj∗ or both MSi < MSj and MS∗
i >

MSj∗. The coefficient, τ , is calculated as the difference
between the number of concordant and discordant pairs, di-
vided by the total number of pairs.

The Pearson product-moment correlation coefficient (r) is
a coefficient obtained by calculating the covariance between
the MS and MS∗ values, divided by the product of the
standard deviation of the MSs and MS∗s. Similarly, the
Spearman’s ρ coefficient is the Pearson product moment be-
tween the ranked MSs and MS∗s. These three coefficients
take values from -1 to 1. A coefficient of 1, or -1, indicates a
perfect correlation while a zero coefficient denotes the total
absence of correlation.

To evaluate whether the achieved mutation scores MSs
and subsuming mutation scores MS∗ are significantly dif-
ferent, we use a Mann-Whitney U Test performed at the
5% significance level. This statistical test yields a proba-
bility called p-value which represents the probability that
the MSs and MS∗ are equal. Thus, a p-value lower than
5% indicates that the two metrics are statistically different.
We use an unpaired and two-tailed U test, because there’s
no relationships between each of the runs and because we
make no assumptions regarding which of the MS or MS∗

outperforms the other.

4.3 Programs Used
We use the following programs that we obtained from

the Software-artifact Infrastructure Repository [12]: Grep,
Sed, Flex, Make, Gzip. We selected these programs be-
cause they are real world C programs that have been widely
used in software engineering research and they are also ac-

Table 1: The subject programs used in the experi-
ments. For each of them, its versions, lines of codes,
number of test cases together with the number of
non-duplicated mutants are presented.

Program Version LoC Test Cases Mutants

Grep 2.4 12,826 440 11,395
Sed 4.0.8 18,687 324 4,330
Flex 2.5.2 12,249 500 11,693
Make 3.78.1 20,461 111 22,023
Gzip 1.2.2 5,048 156 5,338

companied by mature test suites which are important for
conducting our experiments. Grep and Sed are regular
expressions-based processing tools for respectively searching
and parsing/transforming text. Flex is a tool which gen-
erates lexical analyzers, Make is a tool for automatically
building libraries and executable programs and Gzip is a
popular file compressor. Table 1 records details regarding
our subjects. For each one of them, it records its version,
lines of code, number of the used test cases and mutants.

4.4 Mutation Operators
We built a prototype mutation testing tool based on a

program matching and transformation tool called Coccinelle
[40]. It operates on the source code by performing program
transformations using a semantic patch language in which
the sought transformations are specified. We wrote the
employed mutation operators as program transformations
rules. Following the recommendations from the literature,
i.e., [4, 6, 23, 36] we used the following operators: Arith-
metic (AOR), Logical Connector Replacement (LCR), Re-
lational (ROR), Unary Operator Mutation (UOM), Arith-
metic assignment mutation (OAAA), Bitwise operator mu-
tation (OBBN), Logical context negation (OCNG), State-
ment Deletion (SSDL) and Integer Constant replacement
(CRCR).

To reduce the subsumed mutants, we followed the guide-
lines of Tai et al. [50] and Kaminski et al. [27] and used a
restrictive versions of the ROR and LCR operators. We also
restricted the unary operators to replacement only.

5. RESULTS

5.1 Subsuming Mutants, Answering RQ1
The first research question regards the prevalence of sub-

suming mutants, i.e., mutants contributing to the testing
process, in our subjects. Our results show that only a tiny
proportion, ranging from 0.4% to 4.8% (GREP 1.7%, SED
3.2%, FLEX 4.8%, MAKE 0.4%, GZIP 2.5%), of mutants
is actually needed for performing mutation analysis. It is
noted that the above results correspond to the killed mu-
tants (we removed the duplicated and live mutants from
our analysis mutant sets) and that based on our test suites,
killing these mutants guarantees, under the same test suite
pool, the killing of all mutants of our analysis mutant sets.

Evidently the presence of so many subsumed mutants can
potentially have a distorting effect in the accuracy of the
mutation score. As a result, they skew the measurement
and provide a misleading information regarding the level
of test thoroughness. This is further investigated in our
next research questions that are discussed in the following
sections.

5.2 Inflation Effect, Answering RQ2
In our second research question we investigate the influ-

ence of the mutant inflation effect when using mutant sets
of different sizes and measuring the effectiveness of the tests
that kill them. We use all mutants and the subsuming mu-
tants as effectiveness measurements. Figures 1(a) to 1(e)
depict these results, for our subjects, when selecting mu-
tants of size equal to the 0.5%, 1%, 2%, 4% and 8% respec-
tively. Figure 1(f) depicts an example of all of our data,
i.e., for mutant sets of sizes from 0.5% to 100%, to provide
the whole picture of the two measurements. The upper line,
gray boxes, represent the MS values while the lower line,
white boxes, represent the MS∗ values.

Our results demonstrate that killing a random 0.5% of all
the mutants results in an effectiveness measure of at least
50%, according to MS, while in some cases, this measure
is close to or above to 90%. When considering subsuming
mutants, i.e., the MS∗, as an effectiveness measure, we ob-
serve that the effectiveness in the best case is 30%, while in
most of the cases it is approximately 10%. the situation is
similar when considering larger sets of mutants. Based on
our results, with 8% of the mutants, we can have mutation
scores of more than 90% (according to all mutants). How-
ever, in practice the great majority of these mutants will
be subsumed and, as shown by our data, with respect to
subsuming mutants, 8% of the mutants potentially can have
effectiveness of at most 50%. Therefore, the inflation effect
of the mutation score, using random mutants is important
since the more mutants considered the more“blunt”becomes
the test effectiveness measure.

Ideally, what we need is a metric that can distinguish
among all the different mutant sets. Our results demonstrate
that subsuming mutants form a good approximation to this
ideal case since they fairly discriminate among the different
mutants sets.

5.3 Correlation Analysis, Answering RQ3
Up to this point, our analysis has shown that subsumed

mutants are prevalent. When mutation is used to guide the
test generation process, the consequences of this issue, apart
from the misleading measurement, does not seem to be im-
portant. However, in literature, mutation is used as a com-
parison basis between testing methods. In this specific case,
the existence of so many non-contributing mutants can have
a distorting effect in the effectiveness calculation. Thus, it
is possible that one can receive an unfair advantage simply
by killing these mutants. This is the subject of our third re-
search question, where we investigate whether the subsumed
mutants can have an influence on the measured comparisons.

We investigate this issue by computing the strength of the
relation between mutation score and subsuming mutation
score. A strong relation, i.e., a strong correlation, suggests
that the two measurements have quite similar trend, i.e.,
to increase or decrease by a relatively similar amount. We
also control for test suite size to investigate the impact of
test suite effectiveness on the reported correlations. Table
2 records the results for the three correlation coefficients.
Recall that all values are statistically significant. These re-
sults demonstrate that most of the correlations are fairly
weak, between 0.2 - 0.6, with very few exceptions (for Gzip
and large test suite sizes). Another interesting point is that
all three coefficients agree among themselves. Thus, they
provide confidence on the reported relations.

An important aspect of these results is the influence of
test suite size on the correlations. This sometimes, in the
cases of Grep and Sed, does not make a difference, while in
the other cases, Flex, Make and Gzip, it does. Gzip seems
to be an outlier, but this can be explained by the high mu-
tation score achieved by the tests applied to Gzip, i.e., all
the sets kill almost all the mutants. However, even in such
excessive cases like this, many correlation coefficients have
only medium level correlation.

Overall, our results suggest that mutation score (MS) is
influenced by subsumed mutants. Hence, MS might not be
a reliable indicator of the test effectiveness. Even in the
cases that there is a strong correlation, there remain threats
to commit subsequent error. We investigate this issue in the
following sections.

5.4 Type I Error Analysis, Answering RQ4
A Type I error, also known as “false positive”, refers to

the case of rejecting, incorrectly, a true null hypothesis. In
this research question, RQ4, we simulate a scenario where
a researcher compares the quality of the test sets that were
produced by two test techniques and uses mutation test-
ing to identify the most effective technique. Our goal is
to estimate the chances of getting a Type I error due to
the presence of subsumed mutants. As explained before, we
randomly selected groups of test suite sets, of equal size,
having statistically significant difference according to tra-
ditional MS and measured the number of errors that this
process would entail with respect to the MS∗.

Our results are depicted in Figure 2, which records, for
every subject program (Figure 2(a) to 2(e)), the ratio of
Type I errors committed when using different test suite sizes.
We observe that, with the exception of Gzip, test size does
not reduce the errors. This finding suggests that subsumed
mutants influence the results that would be reported even
when the examined sets of tests can kill most of the mutants
under analysis.

The overall picture (Figure 2(f) records the average on all
the programs and test sizes) is in line with the data reported
for the previous research question; the chances to get a cor-
rect solution, according to both measures, is proportional to
the correlation coefficients presented in RQ3. Finally, and
perhaps more importantly, the chance of committing Type
I error is high: approximately 62%, on average. This raises
concerns regarding the validity of the conducted experiments
that use mutation-based test assessment.

5.5 Sensitivity Analysis, Answering RQ5
In this section we go beyond statistical significance and

perform a sensitivity analysis on the Type I errors with re-
spect to increasing effect size. We thus try to identify the
differences in mutation score, between the compared groups,
that have a reduced chance of committing an error due to
the increases in the effect size. To do so we constructed cases
where we control for size and there is statistical significance
difference between the studied groups while their average
effect size, mutation score difference, is approximately 2%,
4%, 6%, 8% and 10%.

Sensitivity analysis results are presented in Figure 3. The
plots present the level of agreement, i.e., chance to avoid
making an error, between the two measurements, mutation
score and subsuming mutation score, when the groups have
a difference of 2%-10%. As expected, when the effect size

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 1 2 4 8

(a) Grep

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 1 2 4 8

(b) Sed

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 1 2 4 8

(c) Flex

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 1 2 4 8

(d) Make

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 1 2 4 8

(e) Gzip

0

0.2

0.4

0.6

0.8

1

12 4 8 16 32 64 100

(f) Grep

Figure 1: RQ2: Inflation effect, the MS is an undiscriminating measurement. Figures 1(a) to 1(e) present
the curves and the distribution of the scores obtained when killing the 0.5%, 1%, 2%, 4% and 8% (x-axis) of
randomly selected mutants. The y-axis in the upper (gray boxes) curve records the ratio of killed mutants
over all mutants (MS), while the lower curve (white boxes) the ratio of subsuming mutants killed (MS∗).
Figure 1(f) shows an example of the “whole picture”, when considering (killing) up to 100% of the mutants.

increases the disagreement reduces. However, it is surpris-
ing that, even in the case where there is 10% difference,
the chances for error remain high. For Make and Gzip, the
chances appear lower for differences above 4%. Since we con-
trol for size, it was not possible to obtain differences between
the two sets higher than 8% for Gzip and 10% for Make.
These results suggest that even when having large effect size
differences and controlling for test suite size, mutation-based
test assessment is still prone to errors.

6. DISCUSSION

6.1 Research Impact
To estimate the impact of our findings on testing studies,

we measured the extent to which recent research is vulnera-
ble to the threats to validity that we have identified. Thus,
we gathered all the papers from the last two years in the
three leading software conferences, ISSTA, (ESEC)FSE and

ICSE and counted the number of them that concern soft-
ware testing, mutation testing and mutation-based test as-
sessment. The last category is the one that is vulnerable to
the validity threat we identified.

Our procedure was to gather all papers and keep only
those having more than 6 pages. This process resulted in
389 papers. We then read and categorized these papers as
presented in Table 3. Overall, 91 papers were concerned with
software testing, of them 25 used mutation testing. Among
the 25 papers that used mutation, 17 involved mutation-
based test assessment none of which consider mutant sub-
sumption. Thus, approximately 27% of the testing papers
involve mutation testing and 68% of those papers are poten-
tially vulnerable to the subsumed mutant threat.

6.2 Threats to Validity
Our study concerns Type I errors as a potential threat to

validity in previous work. All these threats are construct va-
lidity threats, since they question the mutation score metric,

Table 2: RQ3: Correlation analysis; indicate that the proportion of all mutants killed (MS) is not generally
strongly correlated with the proportion of subsuming mutants killed (MS∗). For each considered number
of test cases and program, the mutation score (MS), Kendall (τ), Pearson (r) and Spearman (ρ) correlation
coefficients between the mutation score (MS) and subsuming mutation score (MS∗) are presented.

Grep Sed Flex Make Gzip

No. Tests MS τ r ρ MS τ r ρ MS τ r ρ MS τ r ρ MS τ r ρ

3 0.705 0.4 0.52 0.54 0.732 0.42 0.5 0.54 0.641 0.24 0.33 0.32 0.798 0.51 0.58 0.63 0.962 0.49 0.29 0.54

6 0.784 0.34 0.48 0.47 0.794 0.35 0.45 0.46 0.769 0.29 0.38 0.39 0.852 0.63 0.61 0.76 0.973 0.52 0.48 0.59

9 0.824 0.22 0.35 0.31 0.821 0.36 0.46 0.47 0.822 0.33 0.42 0.44 0.880 0.71 0.57 0.84 0.979 0.54 0.51 0.61

12 0.847 0.24 0.37 0.34 0.836 0.37 0.47 0.49 0.862 0.35 0.44 0.46 0.891 0.73 0.52 0.86 0.983 0.58 0.54 0.65

15 0.864 0.19 0.29 0.27 0.851 0.36 0.44 0.47 0.882 0.39 0.46 0.50 0.899 0.76 0.54 0.89 0.987 0.63 0.56 0.71

18 0.875 0.17 0.25 0.24 0.860 0.37 0.46 0.49 0.899 0.46 0.51 0.59 0.906 0.78 0.56 0.91 0.988 0.66 0.53 0.73

21 0.885 0.21 0.29 0.29 0.869 0.37 0.46 0.49 0.910 0.44 0.46 0.55 0.910 0.79 0.63 0.92 0.991 0.73 0.55 0.79

24 0.892 0.22 0.32 0.31 0.875 0.38 0.46 0.50 0.920 0.47 0.45 0.57 0.913 0.79 0.74 0.92 0.992 0.74 0.52 0.80

27 0.899 0.20 0.27 0.28 0.885 0.40 0.49 0.52 0.925 0.56 0.52 0.68 0.916 0.80 0.75 0.92 0.993 0.78 0.55 0.83

30 0.905 0.24 0.34 0.34 0.890 0.40 0.48 0.52 0.931 0.55 0.47 0.66 0.919 0.80 0.93 0.92 0.995 0.83 0.57 0.88

33 0.909 0.25 0.36 0.35 0.896 0.43 0.52 0.55 0.937 0.58 0.47 0.68 0.921 0.81 0.93 0.93 0.995 0.89 0.60 0.92

36 0.913 0.24 0.35 0.34 0.900 0.40 0.50 0.52 0.941 0.57 0.42 0.68 0.923 0.81 0.94 0.93 0.996 0.91 0.61 0.94

39 0.000 0.26 0.37 0.36 0.918 0.39 0.49 0.50 0.944 0.62 0.48 0.73 0.904 0.81 0.93 0.93 0.926 0.92 0.63 0.95

42 0.920 0.28 0.39 0.38 0.908 0.46 0.58 0.59 0.949 0.64 0.46 0.73 0.928 0.81 0.93 0.93 0.997 0.92 0.61 0.95

45 0.924 0.26 0.37 0.36 0.913 0.41 0.52 0.54 0.951 0.68 0.47 0.78 0.929 0.82 0.94 0.93 0.997 0.96 0.65 0.98

48 0.927 0.28 0.40 0.39 0.915 0.43 0.53 0.55 0.953 0.70 0.52 0.80 0.931 0.81 0.94 0.93 0.997 0.96 0.70 0.98

51 0.928 0.28 0.40 0.39 0.920 0.41 0.51 0.52 0.956 0.69 0.47 0.79 0.934 0.82 0.94 0.94 0.998 0.98 0.71 0.99

54 0.931 0.33 0.43 0.45 0.921 0.42 0.51 0.54 0.956 0.72 0.53 0.83 0.936 0.83 0.95 0.94 0.998 0.98 0.79 0.99

57 0.935 0.29 0.41 0.40 0.923 0.46 0.56 0.58 0.958 0.69 0.54 0.79 0.937 0.83 0.94 0.94 0.998 0.99 0.75 0.99

60 0.936 0.30 0.40 0.41 0.927 0.42 0.53 0.53 0.960 0.75 0.54 0.85 0.939 0.83 0.95 0.94 0.998 0.99 0.77 1.00

63 0.938 0.29 0.39 0.40 0.930 0.42 0.52 0.53 0.961 0.74 0.57 0.84 0.941 0.83 0.95 0.94 0.998 0.99 0.93 1.00

66 0.939 0.28 0.37 0.39 0.932 0.44 0.54 0.56 0.963 0.76 0.55 0.86 0.943 0.83 0.95 0.94 0.999 0.99 0.79 1.00

69 0.943 0.31 0.41 0.42 0.937 0.41 0.51 0.53 0.964 0.77 0.58 0.86 0.945 0.83 0.95 0.94 0.998 0.99 0.87 1.00

72 0.943 0.33 0.45 0.46 0.937 0.47 0.57 0.59 0.963 0.77 0.61 0.86 0.946 0.82 0.94 0.94 0.999 1.00 0.82 1.00

75 0.945 0.33 0.44 0.45 0.938 0.43 0.53 0.54 0.965 0.77 0.66 0.86 0.947 0.83 0.95 0.94 0.999 1.00 0.87 1.00

78 0.947 0.34 0.45 0.47 0.940 0.41 0.50 0.52 0.966 0.77 0.64 0.86 0.949 0.83 0.95 0.94 0.999 1.00 0.84 1.00

81 0.948 0.35 0.44 0.47 0.944 0.44 0.53 0.56 0.967 0.74 0.60 0.83 0.950 0.84 0.95 0.95 0.999 1.00 0.98 1.00

84 0.949 0.31 0.41 0.43 0.945 0.46 0.55 0.58 0.967 0.79 0.68 0.88 0.952 0.83 0.95 0.94 0.999 1.00 0.91 1.00

87 0.952 0.35 0.45 0.47 0.946 0.45 0.53 0.56 0.968 0.77 0.70 0.87 0.953 0.84 0.95 0.95 0.999 1.00 1.00 1.00

90 0.953 0.34 0.43 0.46 0.949 0.45 0.53 0.57 0.969 0.76 0.70 0.85 0.955 0.84 0.95 0.95 0.999 1.00 0.91 1.00

but they are also internal validity threats since the confound-
ing effects of subsumed mutants can determine our results
(instead of all mutants). Namin and Kakarla [34] investi-
gated threats regarding mutation operators, test suite size,
and programming languages, which are all orthogonal to the
threats we investigate here. Naturally, it is our duty to draw
the reader’s attention to the threats to the validity of our
own findings.

6.2.1 Construct Validity
These threats regard the used measures, i.e., whether they

are representative or not. Regarding mutation score and
subsuming mutation score measures, we measure the test
case ability to test thoroughly the code under assessment ac-
cording to the mutation testing criterion. We demonstrate
both the need and the consequences of not using these mea-
sure. This practice is also in line with previous research
[28, 38, 39] and our results, ratios of subsuming mutants,
are similar to those reported in their preliminary evalua-
tions. Ideally, we would need to back our results with some
“ground truth” data supporting the use of subsuming mu-
tants. However, since the chances of committing Type I
errors are high, a large variation between the two measure-
ments is expected. This is a problem even in the case that
the ground truth suggest against the subsuming mutants.
Moreover, subsuming mutants form a measure free of re-
dundant requirements, with respect to the used test suite.

Another threat might be due to the employed mutants,

which could be non-representative of the “ideal” mutation
testing criterion. We carefully choose mutants following the
latest advances on mutation testing as detailed in Section
4.4. Additionally, these mutants were also used in the well-
known mutation testing studies of Andrews et al. [5, 6].

6.2.2 Internal Validity
These are potential threats from our conclusions and our

measurements. We used tests that are non-adequate and
this might influence our results. However, non-adequate
tests suites are widely used in practice [15] and the identifi-
cation of equivalent and subsuming mutants is infeasible in
real-world projects. Therefore, our results remain relevant
to current mutation-based test assessment practices. An-
other issue is what is truly an “adequate test suite”, future
research will deepen our understanding on this respect.

Other issues might arise due to the tool we used. This
might have errors that can affect our findings. We care-
fully checked our implementation and performed a manual
evaluation of our results on some smaller programs. Also,
Coccinelle is a tool widely used by both practitioners and
researchers [1].

The random samples we studied involve a certain degree
of stochastic data and consequently equivalently stochastic
results. To reduce the influence of the random effects, we
repeated our experiments a large number of times, 30 or
1,000 times each, and used statistical correlation techniques.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87

(a) Grep

 0

 0.2

 0.4

 0.6

 0.8

 1

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87

(b) Sed

 0

 0.2

 0.4

 0.6

 0.8

 1

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87

(c) Flex

 0

 0.2

 0.4

 0.6

 0.8

 1

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87

(d) Make

 0

 0.2

 0.4

 0.6

 0.8

 1

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87

(e) Gzip

0

0.2

0.4

0.6

0.8

1

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87

62%

(f) Avg on all the programs

Figure 2: RQ4: Subsumed mutants in arbitrary sets of mutation-based test assessment experiments lead
to Type I errors. For each subject program, and for all of them together, the bars record the chance of
committing a Type I error per considered test suite size. The average on all the programs and sizes is 62%.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Grep Sed Flex M
ak

e
Gzip Grep Sed Flex M

ak
e

Gzip Grep Sed Flex M
ak

e
Gzip Grep Sed Flex M

ak
e

Gzip Grep Sed Flex M
ak

e
Gzip

Pr
op

or
tio

n
of

 A
gr

ee
m

en
t

2% Difference 4% Difference 6% Difference 8% Difference 10% Difference

Figure 3: RQ5: Sensitivity analysis. Errors remain even as effect size increases. For each program, the
boxplots represent the level of agreement, chance to avoid an error, between the mutation score (MS) and
the subsuming mutation score (MS∗) when comparing test suites of the same size that have mutation score
differences, on average, 2%, 4%, 6%, 8% and 10%. Since test size is controlled for, it was not possible to
construct differences of more than 8% for Gzip and 10% for Make.

6.2.3 External Validity
These threats regard the generalizability of our results.

We used 5 widely used in real-world projects. Still, there
are many factors, e.g., test suites, programs and tools, that
can affect our findings. Though, our goal is to show potential
weaknesses of studies conducted under similar settings.

7. RELATED WORK
In literature two types of seeded faults appear; the machine-

generated ones (mutants) and the manually seeded faults
(introduced by humans based on their experience). Hutchins
et al. [20] performed one of the first studies with manually
seeded faults using the well-known Siemens suite. Although
manually seeded faults are typically much fewer and hence
less likely to have severe subsumption problems, the quality

of these faults depends on the knowledge and expertise of the
person that makes the seeding. For instance, the study of
Hutchins et al. [20] only aimed at seeding faults that were
revealed by a small fraction of tests and thus, completely
ignored the subsumed mutant threat.

Mutation analysis was initially introduced as a test method
helping the generation of test cases [10]. However, in recent
years it has been proven to be quite powerful and capable of
supporting various software engineering tasks [39]. In par-
ticular, mutants have been used to guide test generation [14,
16, 43], test oracle generation [14], to assist the debugging
activities [19, 46], to evaluate fault detection ability [6, 24]
and to support regression testing activities like test selec-
tion and prioritization [13, 48, 53]. The method has also
been applied to behavioral models [2, 11], software product
lines [17] and combination strategies [41].

Table 3: Subsumed mutant threats in the last two
years of ISSTA, (ESEC)FSE, and ICSE testing stud-
ies. The percentages represent the ratios of the test-
ing studies that use mutation and those on mutation
vulnerable to the subsumed mutant threat.

Conf. Year Testing Mutation Testing Threatened

ISSTA
’14 17 3 18% 1 33%

’15 17 3 18% 3 100%

(ESEC) ’14 11 3 27% 2 67%

FSE ’15 14 5 36% 4 80%

ICSE
’14 12 6 50% 5 83%

’15 20 5 25% 2 40%

Total 91 25 27% 17 68%

Equivalent mutants form one of the main problems of mu-
tation testing [18, 31, 47]. Despite the efforts made by the
community, e.g., [23], and recent advances [7, 29, 42, 47],
the problem is remains [42]. A similar situation arises when
considering mutation-based test generation [14, 16, 43].

Mutation is popular [23] thanks to mutants’ ability to sim-
ulate the behaviour of real faults [6, 24]. Also, many modern
mutation tools are integrated with build systems and devel-
opment tools, thus making their application easy [9]. Pre-
vious research has also suggested that mutation testing has
the ability to probably subsume and to reveal more faults
than most of the other white-box testing criteria [37, 39] and
hence potentially provide testers with substantial benefits.

From its incipient, it was evident that the number of mu-
tants was a practical problem of mutation testing. There-
fore, researchers tried to identify smaller yet representative
subsets. An initial reduction was made based on the cou-
pling effect hypothesis, which states that test cases revealing
simple mutants can also reveal complex ones [10, 35].

A simple but effective way to reduce the number of mu-
tants is random sampling [44]. Although, sampling can pro-
vide a range of trade-offs, Papadakis and Malevris [44] pro-
vided evidence that mutant sampling ratios of 10% to 60%
have a loss on fault detection from 6% to 26%. Similar re-
sults have been shown in the study of Wong et al. [51].

There are other mutant reduction strategies that fall in
the category of selective mutation [36]. Selective mutation
tries to reduce the arbitrariness of random sampling by using
only specific types of mutants. However, Zhang et al. [52]
showed that in practice random mutant sampling performs
comparably well with the selective mutation.

The studies of Tai [49, 50] focused on reducing the num-
ber of the mutants with respect to two fault-based testing
strategies. This was achieved by constraining and restricting
the mutants produced by the relational and logical mutation
operators to reduce the number of subsumed mutants. Thus,
their suggestion was to restrict the mutant instances of the
relational and logical operators. In later studies, Kaminski
et al. [26, 27] studied the relational mutation operator and
came to a similar conclusion. Hence, they proposed reduc-
ing the number of the subsumed mutants by restricting the
mutant instances of the relational operator.

Using minimized constraint mutant instances to efficiently
generate mutation-based test cases has been proposed by Pa-
padakis and Malevris [45]. Thus, when aiming at generating
test cases, there is no point of targeting subsumed mutants

instead of the subsuming ones. On the same lines, Just et
al. [25] demonstrated that by constraining the relational
and logical operators, it is possible to reduce the number of
subsumed mutants.

The first study that used subsuming mutants to compare
testing techniques, is that of Kintis et al. [28]. Kintis et al.
introduced the notion of disjoint mutants and demonstrated
that the majority of mutants produced by the MuJava tool
are jointly killed, i.e., they are subsumed. The same study
also shown that hard-to-kill mutants are prone to the mu-
tant subsumption problem. Amman et al. [3] defined and
analysed the minimal mutant sets. Their results agree with
that of Kintis et al. and demonstrate that the majority of
mutants used by the MuJava and Proteum mutation test-
ing tools are subsumed. Later, Kurtz et al. [30] used static
analysis techniques, such as symbolic execution to identify
subsuming mutants.

More recently, Papadakis et al. [42] used compilers to
eliminate trivially duplicated mutants, i.e., a special form of
subsumed mutants. Recall, that these mutants are mutually
equivalent but not with the original program. In the same
study, it is reported that 21% of all mutants is duplicated
and can be removed by using the compiler optimization tech-
niques of the GCC compiler.

All the approaches discussed in this section aimed at re-
ducing the application cost of mutation testing. Those that
considered mutant subsumption either identified the fact
that most of the mutants are trivial/subsumed or used some
form of redundancy elimination to reduce cost. Therefore,
none of them studied the distorting effects of including sub-
sumed mutants, nor the use of subsuming mutants as a way
to strengthening experiments, i.e., by reducing the chances
of committing Type I errors.

8. CONCLUSION
This paper presents experimental evidence for the threat

to validity occasioned by the inclusion of subsumed mutants
in mutation-based test assessment studies. This evidence
highlights the need to use mutation-based assessment met-
rics based solely on subsuming mutants. We are not the first
authors to advocate the use of such a mutation assessment
metric, but we are the first to investigate the scientific cost of
ignoring this advice. We show that a large number of studies
are vulnerable to this threat to validity. Based on our find-
ings we recommend that all such future studies should, first,
identify and discard as many subsumed mutants as possible.

In future, we plan to investigate whether mutant sub-
sumption can also lead to type II errors and whether the
choice of mutant operators can affect our results, (here we
only consider random mutant selection). We also plan to val-
idate further our findings using more and real data. Finally,
although our results show that an arbitrary experiment has
a high chance of committing a type I error, this might vary
for particular experiments. Therefore, we plan to replicate
previous research to address the subsumed mutant threat.

9. ACKNOWLEDGMENTS
Mike Papadakis is supported by the National Research

Fund, Luxembourg, INTER/MOBILITY/14/7562175 and
by Microsoft Azure Grant 2015. Mark Harman and Yue
Jia are supported by EPSRC grant Dynamic Adaptive Au-
tomated Software Engineering (DAASE: EP/J017515).

10. REFERENCES
[1] Coccinelle: A program matching and transformation

tool for systems code.
http://coccinelle.lip6.fr/papers.php.

[2] B. K. Aichernig, J. Auer, E. Jöbstl, R. Korosec,
W. Krenn, R. Schlick, and B. V. Schmidt.
Model-based mutation testing of an industrial
measurement device. In Tests and Proofs - 8th
International Conference TAP, pages 1–19, 2014.

[3] P. Ammann, M. E. Delamaro, and J. Offutt.
Establishing theoretical minimal sets of mutants. In
IEEE International Conference on Software Testing,
Verification and Validation, ICST, pages 21–30, 2014.

[4] P. Ammann and J. Offutt. Introduction to software
testing. Cambridge University Press, 2008.

[5] J. H. Andrews, L. C. Briand, and Y. Labiche. Is
Mutation an Appropriate Tool for Testing
Experiments? In ICSE, pages 402 – 411, 2005.

[6] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using Mutation Analysis for Assessing and
Comparing Testing Coverage Criteria. IEEE Trans.
Softw. Eng., 32(8):608–624, 2006.

[7] S. Bardin, M. Delahaye, R. David, N. Kosmatov,
M. Papadakis, Y. L. Traon, and J. Marion. Sound and
quasi-complete detection of infeasible test
requirements. In 8th IEEE International Conference
on Software Testing, Verification and Validation,
ICST 2015, pages 1–10, 2015.

[8] T. A. Budd and D. Angluin. Two Notions of
Correctness and Their Relation to Testing. Acta
Informatica, 18(1):31–45, 1982.

[9] M. Delahaye and L. du Bousquet. Selecting a software
engineering tool: lessons learnt from mutation
analysis. Softw., Pract. Exper., 45(7):875–891, 2015.

[10] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41, Apr. 1978.

[11] X. Devroey, G. Perrouin, M. Papadakis, P.-Y.
Schobbens, and P. Heymans. Featured Model-based
Mutation Analysis. In International Conference on
Software Engineering, ICSE, Austin, TX, USA, 2016.

[12] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405–435, 2005.

[13] H. Do and G. Rothermel. On the use of mutation
faults in empirical assessments of test case
prioritization techniques. IEEE Trans. Software Eng.,
32(9):733–752, 2006.

[14] G. Fraser and A. Zeller. Mutation-driven generation of
unit tests and oracles. IEEE Trans. Software Eng.,
38(2):278–292, 2012.

[15] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A.
Alipour, and D. Marinov. Guidelines for
coverage-based comparisons of non-adequate test
suites. ACM Trans. Softw. Eng. Methodol., 24(4):22,
2015.

[16] M. Harman, Y. Jia, and W. B. Langdon. Strong
higher order mutation-based test data generation. In
19th ACM SIGSOFT Symposium on the Foundations
of Software Engineering and 13rd European Software
Engineering Conference, pages 212–222, 2011.

[17] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon. Assessing software product line testing
via model-based mutation: An application to
similarity testing. In IEEE International Conference
on Software Testing, Verification and Validation,
ICST Workshops Proceedings, pages 188–197, 2013.

[18] R. M. Hierons, M. Harman, and S. Danicic. Using
program slicing to assist in the detection of equivalent
mutants. Softw. Test., Verif. Reliab., 9(4):233–262,
1999.

[19] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim,
and M. Kim. Mutation-based fault localization for
real-world multilingual programs (T). In 30th
IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA,
November 9-13, 2015, pages 464–475, 2015.

[20] M. Hutchins, H. Foster, T. Goradia, and T. J.
Ostrand. Experiments of the effectiveness of dataflow-
and controlflow-based test adequacy criteria. In
Proceedings of the 16th International Conference on
Software Engineering, pages 191–200, 1994.

[21] L. Inozemtseva and R. Holmes. Coverage is not
strongly correlated with test suite effectiveness. In
36th International Conference on Software
Engineering, ICSE ’14, Hyderabad, India - May 31 -
June 07, 2014, pages 435–445, 2014.

[22] Y. Jia and M. Harman. Higher Order Mutation
Testing. Journal of Information and Software
Technology, 51(10):1379–1393, October 2009.

[23] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. Software
Engineering, IEEE Transactions on, 37(5):649 –678,
sept.-oct. 2011.

[24] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? In
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 654–665, 2014.

[25] R. Just, G. M. Kapfhammer, and F. Schweiggert. Do
redundant mutants affect the effectiveness and
efficiency of mutation analysis? In Fifth IEEE
International Conference on Software Testing,
Verification and Validation, ICST 2012, Montreal,
QC, Canada, April 17-21, 2012, pages 720–725, 2012.

[26] G. Kaminski, P. Ammann, and J. Offutt. Better
predicate testing. In Proceedings of the 6th
International Workshop on Automation of Software
Test, AST, pages 57–63, 2011.

[27] G. Kaminski, P. Ammann, and J. Offutt. Improving
logic-based testing. Journal of Systems and Software,
86(8):2002–2012, 2013.

[28] M. Kintis, M. Papadakis, and N. Malevris. Evaluating
mutation testing alternatives: A collateral experiment.
In APSEC, pages 300–309, 2010.

[29] M. Kintis, M. Papadakis, and N. Malevris. Employing
second-order mutation for isolating first-order
equivalent mutants. Softw. Test., Verif. Reliab.,
25(5-7):508–535, 2015.

[30] B. Kurtz, P. Ammann, and J. Offutt. Static analysis
of mutant subsumption. In Eighth IEEE International
Conference on Software Testing, Verification and

http://coccinelle.lip6.fr/papers.php

Validation, ICST 2015 Workshops, Graz, Austria,
April 13-17, 2015, pages 1–10, 2015.

[31] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Jozala.
Overcoming the equivalent mutant problem: A
systematic literature review and a comparative
experiment of second order mutation. IEEE Trans.
Software Eng., 40(1):23–42, 2014.

[32] A. S. Namin and J. H. Andrews. The influence of size
and coverage on test suite effectiveness. In Proceedings
of the Eighteenth International Symposium on
Software Testing and Analysis, ISSTA 2009, Chicago,
IL, USA, July 19-23, 2009, pages 57–68, 2009.

[33] A. S. Namin, J. H. Andrews, and D. J. Murdoch.
Sufficient mutation operators for measuring test
effectiveness. In 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, pages 351–360, 2008.

[34] A. S. Namin and S. Kakarla. The use of mutation in
testing experiments and its sensitivity to external
threats. In Proceedings of the 20th International
Symposium on Software Testing and Analysis, ISSTA,
pages 342–352, 2011.

[35] A. J. Offutt. The Coupling Effect: Fact or Fiction.
ACM SIGSOFT Software Engineering Notes,
14(8):131–140, December 1989.

[36] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf. An Experimental Determination of Sufficient
Mutant Operators. ACM T. Softw. Eng. Meth.,
5(2):99–118, April 1996.

[37] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang. An
Experimental Evaluation of Data Flow and Mutation
Testing. Software Pract. Exper., 26(2):165–176, 1996.

[38] A. J. Offutt and J. M. Voas. Subsumption of condition
coverage techniques by mutation testing. 1996.

[39] J. Offutt. A mutation carol: Past, present and future.
Information & Software Technology, 53(10):1098–1107,
2011.

[40] Y. Padioleau, J. L. Lawall, R. R. Hansen, and
G. Muller. Documenting and automating collateral
evolutions in linux device drivers. In Proceedings of the
2008 EuroSys Conference, Glasgow, Scotland, UK,
April 1-4, 2008, pages 247–260, 2008.

[41] M. Papadakis, C. Henard, and Y. L. Traon. Sampling
program inputs with mutation analysis: Going beyond
combinatorial interaction testing. In IEEE
International Conference on Software Testing,
Verification and Validation, ICST 2014, Cleveland,
Ohio, USA, pages 1–10, 2014.

[42] M. Papadakis, Y. Jia, M. Harman, and Y. L. Traon.
Trivial compiler equivalence: A large scale empirical
study of a simple, fast and effective equivalent mutant
detection technique. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1, pages
936–946, 2015.

[43] M. Papadakis and N. Malevris. Automatic mutation
test case generation via dynamic symbolic execution.
In IEEE 21st International Symposium on Software
Reliability Engineering, ISSRE 2010, San Jose, CA,
USA, 1-4 November 2010, pages 121–130, 2010.

[44] M. Papadakis and N. Malevris. An empirical
evaluation of the first and second order mutation
testing strategies. In Third International Conference
on Software Testing, Verification and Validation,
ICST 2010, Paris, France, April 7-9, 2010,
Workshops Proceedings, pages 90–99, 2010.

[45] M. Papadakis and N. Malevris. Mutation based test
case generation via a path selection strategy.
Information & Software Technology, 54(9):915–932,
2012.

[46] M. Papadakis and Y. L. Traon. Metallaxis-fl:
mutation-based fault localization. Softw. Test., Verif.
Reliab., 25(5-7):605–628, 2015.

[47] D. Schuler, V. Dallmeier, and A. Zeller. Efficient
mutation testing by checking invariant violations. In
Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA
2009, Chicago, IL, USA, July 19-23, 2009, pages
69–80, 2009.

[48] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and
D. Marinov. Balancing trade-offs in test-suite
reduction. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November
16 - 22, 2014, pages 246–256, 2014.

[49] K. Tai. Predicate-based test generation for computer
programs. In Proceedings of the 15th International
Conference on Software Engineering, Baltimore,
Maryland, USA, May 17-21, 1993., pages 267–276,
1993.

[50] K.-C. Tai. Theory of Fault-based Predicate Testing
for Computer Programs. IEEE Transactions on
Software Engineering, 22(8):552–562, August 1996.

[51] W. E. Wong and A. P. Mathur. Reducing the Cost of
Mutation Testing: An Empirical Study. J. Syst.
Software, 31(3):185–196, December 1995.

[52] L. Zhang, S. Hou, J. Hu, T. Xie, and H. Mei. Is
operator-based mutant selection superior to random
mutant selection? In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering, pages 435–444, 2010.

[53] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid.
Regression mutation testing. In International
Symposium on Software Testing and Analysis, ISSTA
2012, Minneapolis, MN, USA, July 15-20, 2012, pages
331–341, 2012.

[54] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacy. ACM Comput. Surv.,
29(4):366–427, 1997.

	Introduction
	Mutation Analysis
	Test Criteria and Mutation Testing
	Equivalent, Duplicated, Trivial and Subsumed Mutants
	Subsuming Mutants

	Research Questions
	Methodology
	Definition of the experiment and analysis procedure
	Statistical Analysis
	Programs Used
	Mutation Operators

	Results
	Subsuming Mutants, Answering RQ1
	Inflation Effect, Answering RQ2
	Correlation Analysis, Answering RQ3
	Type I Error Analysis, Answering RQ4
	Sensitivity Analysis, Answering RQ5

	Discussion
	Research Impact
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Conclusion
	Acknowledgments
	References

