T-Wise Test Generation and Prioritization For Large Software Product Line: Technical Report

Christopher Henard and Gilles Perrouin

August 18, 2012

Abstract

This document presents the distance and fitness functions used in the paper entitled "Bypassing the Combinatorial Explosion: Using Similarity to Generate and Prioritize T-wise Test Suites for Large Software Product Lines". In particular, it is shown how these functions are useful in terms of *t*-wise coverage.

Contents

1	1 Representation of the products of a feature model				
2	A distance between two products 2.1 Evaluating the <i>t</i> -wise coverage of two products	$\frac{1}{2}$			
3	A fitness function for N products 3.1 Comparing two N-uplets of products in terms of t-wise coverage	2 3			

1 Representation of the products of a feature model

One product or one configuration is represented as a set of n features of a feature model as $P = \{\pm f_1, ..., \pm f_n\}$, where $+f_i$ indicates a feature which is selected by this product, and $-f_i$ an unselected one. Table 1 illustrates an example of three products and four features.

For instance, product $P_1 = \{+f_1, +f_2, +f_3, -f_4\}$ supports all the features except f_4 .

	Features				
		f_1	f_2	f_3	f_4
Products	P_1	×	×	X	
	P_2	×	×		Х
	P_3	×		×	

Table 1: Example of Three Products For an FM of Four Features

2 A distance between two prodcuts

We use the Jaccard distance [1] d between two products of n features:

$$d: \begin{array}{ccc} P \times P & \longrightarrow & [0,1] \\ d: & (P_i, P_j) & \longmapsto & 1 - \frac{\# P_i \cap P_j}{\# P_i \cup P_i}, \end{array}$$

where $P_i, P_j \in P$, where *n* denotes the number of features of the feature model, where #A denotes the cardinality of the set *A* and with $#P_i \cup P_j > 0$.

For instance, with reference to Table 1, n = 4 and $P_1 = \{+f_1, +f_2, +f_3, -f_4\}$, $P_2 = \{+f_1, +f_2, -f_3, +f_4\}$ and $P_3 = \{+f_1, -f_2, +f_3, -f_4\}$. Thus:

- $d(P_1, P_2) = 1 \frac{\#\{+f_1, +f_2\}}{\#\{+f_1, +f_2, +f_3, -f_3, +f_4, -f_4\}} = 1 \frac{2}{6} \approx 0.67,$
- $d(P_1, P_3) = 0.4,$

• $d(P_2, P_3) = \approx 0.86.$

In this example, P_1 and P_3 are the most similar products (i.e. they share the lowest distance), whereas P_2 and P_3 are the most dissimilar ones.

Besides, the distance d is a normalization between 0 and 1 of the following distance d':

$$d': \begin{array}{ccc} P \times P & \longrightarrow & [0, \#P_i \cup P_j] \\ (P_i, P_j) & \longmapsto & \#P_i \cup P_j - \#P_i \cap P_j. \end{array}$$

In our context, the exact distances values are not important. What is relevant for us is the order between two distances, meaning that if we have N products and k Jaccard distances, we have $d^1(P_1, P_2) < \ldots < d^k(P_{N-1}, P_N) \Leftrightarrow d'^1(P_1, P_2) < \ldots < d'^k(P_{N-1}, P_N)$ because the normalization does not affect the ordering between the distances. In a similar way, $d^1(P_1, P_2) > \ldots > d^k(P_{N-1}, P_N) \Leftrightarrow d'^1(P_1, P_2) > \ldots > d'^k(P_{N-1}, P_N)$. In the following, we'll use d' to simplify the demonstration.

2.1 Evaluating the *t*-wise coverage of two products

The t-wise coverage expresses the ability of the products to cover the t-sets of features of the feature model. A t-set is a valid combination of t (selected or unselected) features of the feature model. This coverage can be evaluated as the number of t-set covered by the products.

Each feature model of *n* features has at most $\binom{2n}{t}$ valid *t*-sets. Each product *P* covers exactly $C(P, n, t) = C(P, \#P, t) = \binom{n}{t}$ *t*-sets. As a result, the *t*-wise coverage of two products P_i and P_j is defined by the number of *t*-sets covered by these two products minus the common *t*-sets covered by these products:

$$Coverage(P_i, P_j) = C(P_i, \#P_i, t) + C(P_j, \#P_j, t) - C(P_i \cap P_j, \#P_i \cap P_j, t) = C(P_i, \#P_i, t) + C(P_j, \#P_j, t) - C(P_i \cap P_j, \underbrace{\#P_i \cup P_j - d'(P_i, P_j)}_{T_i}, t).$$

Proposition 1. The distance d' (and thus d) is a good indicator of the t-wise coverage between two products, *i.e.* Coverage (P_i, P_j) increases with $d'(P_i, P_j)$.

Proof. We have, in particular:

- When $d'(P_i, P_j) = 0$, then x = n and $\#P_i \cap P_j = n$. Thus, $P_i = P_j$ and the coverage is at its minimum value: $Coverage(P_i, P_j) = C(P_i, n, t) = C(P_j, n, t) = \binom{n}{t}$ t-sets.
- When $d'(P_i, P_j) = n$, then x = n and $\#P_i \cap P_j = 0$. Thus, the coverage is at its maximum value: $Coverage(P_i, P_j) = C(P_i, n, t) + C(P_j, n, t) = 2\binom{n}{t} t$ -sets.

Thus:

- $Coverage(P_i, P_j) \ge Coverage(P'_i, P'_j) \Leftrightarrow d'(P_i, P_j) \ge d'(P'_i, P'_j).$
- $Coverage(P_i, P_j) \leq Coverage(P'_i, P'_j) \Leftrightarrow d'(P_i, P_j) \leq d'(P'_i, P'_j).$

As a result, the above-mentioned distance d' (and thus d) is relevant to evaluate the coverage of two products without computing the *t*-sets.

3 A fitness function for N products

We define a fitness function f based on d to evaluate the quality of N products $P_1, ..., P_N$:

$$f: \begin{array}{ccc} P^N & \longrightarrow & \mathbb{R}_+ \\ (P_1, ..., P_N) & \longmapsto & \sum_{j>i\geq 1}^N d(P_i, P_j). \end{array}$$

3.1 Comparing two *N*-uplets of products in terms of *t*-wise coverage

For a given and fixed value of N, this fitness function allows to choose between two N-uplets products $S_1 = (P_1, ..., P_N)$ and $S_2 = (P'_1, ..., P'_N)$ which set potentially has the highest *t*-sets coverage. To this end, we evaluate $f(S_1)$ and $f(S_2)$ and we take the set where f is maximum.

Proposition 2. The fitness function f is a good indicator of the t-wise coverage between $N \ge 2$ products, *i.e.* Coverage $(P_1, ..., P_N)$ generally increases with $f(P_1, ..., P_N)$.

Proof. The fitness function d corresponds to the sum of the distances pairwise between the products:

 $f(P_1, \dots, P_N) = d(P_1, P_2) + d(P_1, P_3) + \dots + d(P_{N-1}, P_N).$

In other words, f corresponds to the evaluation of d between each couple of products. Since it's a sum and given the properties of d, it is direct that the value of f will be maximum when all the terms of the sum are maximum, i.e. when the distance d among any two products is maximum.

References

 Paul Jaccard. Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–579, 1901.